

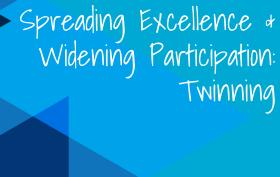
UMA³: Outcomes in a Nutshell

UMA³ has successfully facilitated knowledge transfer between partners and introduced novel advancements in the fields of powder metallurgy, additive manufacturing, composites and high-performance nanocoatings. The project included a wide range of activities that resulted into the following main outcomes:

- Improved the transfer of knowledge between academia and industry,
- Strengthened the UNIMI-FMSE research excellence in advanced aerospace materials solutions,
- Boosted the research profile of UNIMI-FMSE and UMA³ partners,
- Inspired the R&I activity of UNIMI-FMSE and North Hungary region,
- Enhanced the preparation and mobility of both early stage and experienced researchers within the UMA³ network.
- Strengthened the research management and administration profile of UNIMI-FMSE,
- Contributed and supported research and innovation priorities in synergy with the RIS3 strategies.

The Team

Unique Materials for Advanced Aerospace Applications



Connect with UMA3

https://uma3-project.eu

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 952463.

Significant Achievements

To boost the scientific excellence and innovation activities of UNIMI-FMSE, the UMA³ partners have followed a multi-step process and implemented a specialized strategy based on 4 main pillars:

PILLAR

EXCELLENCE SCIENCE

PILLAR SYNERGIES

Training Activities

- Comprehensive training programs were conducted in the domain of materials & aeronautical materials and processes.
- 2 summer schools were organized, in the field of advanced materials synthesis, with focus on additive manufacturing (e.g. 3D printing), characterization, simulation and application of aerospace & aeronautical materials.
- Short-term staff exchanges allowed researchers to collaborate and learn from experts in different institutions.
- Master's and Ph.D. programs were offered to develop highly skilled professionals in the field.
- Researchers received training in complementary skills, such as intellectual property rights, innovation, entrepreneurship, project management and administration.

Strategic Workshops & Seminars

- 3 strategic workshops were successfully conducted, focusing on project activities and fostering collaboration among researchers and industry professionals.
- Several seminars were organized to share knowledge, insights and research findings within the project.

Synergic cooperation activities

- Hungarian research units, universities, industrial companies and SMEs were actively engaged and participated in the project's activities.
- 2 dedicated workshops were organized, bringing together key stakeholders from the Hungarian and Spanish panorama, aiming to create a fertile ecosystem that would enhance and boost business cooperation, uncover new opportunities and facilitate technology transfer and mutual innovation in advanced manufacturing and aerospace industry technologies in both countries.

Observation & promotional activities

- Communications took place with potential end-users to maximize the transfer and promotion of the UMA³ results in Hungary and across the EU.
- UMA³ Researchers presented their work in international conferences and workshops, establishing global connections and sharing their research outcomes.
- Scientific publications were made in open access, highly ranked, peer-reviewed journals, increasing the scientific visibility of UNIMI-FM-SE.

